arduino:silentbase_802_neopixel:programmversion_4
Neopixel-Feuereffekt für das SilentBase 802 - Programmversion 4
Nachdem in Programmversion 3 der Fokus auf der Beschleunigung des Codes lag, spielt Version 4 mit der Möglichkeit der FastLED-Bibliothek, Farbpaletten hinzuzufügen.
// Beleuchtung BeQuiet SilentBase 802
// Arduino Nano (Every)
//------------------------- Eingebundene Bibliotheken ---------------------//
#include <OneWire.h> // Bibliothek für die Kommunikation über OneWire
#include <DallasTemperature.h> // Bibliothek für die digitalen Temperatursensoren DS18B20
#include <FastLED.h> // Bibliothek für die NeoPixel
// Debug-Level
//#define DEBUG_EFFECT // Ausgabe sehr vieler Daten an die serielle Schnittstelle
//#define DEBUG_SENSOR // Ausgabe der Sensordaten und Betriebszustände an die serielle Schnittstelle
//------------------------- Definition der Inputs und Outputs ---------------------//
#define NEOPIN1 2 // NeoPixel-Strip rechte Seite
#define NEOPIN2 4 // NeoPixel-Strip linke Seite
#define POWERPIN 3 // Schaltet über den MOSFET die NeoPixel-Streifen ein
#define LEDPIN1 6 // LED 1
#define LEDPIN2 8 // LED 2
#define ONE_WIRE_BUS 11 // Datenleitung für die Temperatursensoren DS18B20
//------------------------- Definition der NeoPixel-Streifen ---------------------//
#define COLOR_ORDER GRB
#define CHIPSET WS2812B
#define NUM_LEDS 71
#define BRIGHTNESS 200
//-------------------------- Definition der Auflösung der Temperatursensoren ----//
// 9 bit resolution: 0,5°C increments, takes 94 ms for A/D conversion
// 10 bit resolution: 0,25°C increments, takes 188 ms for A/D conversion
// 11 bit resolution: 0,125°C increments, takes 375 ms for A/D conversion
// 12 bit resolution: 0,0625°C increments, takes 750 ms for A/D conversion
#define TEMPERATURE_PRECISION 11
// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);
// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);
// arrays to hold device addresses
DeviceAddress sensor0, sensor1, sensor2;
// Definiert die Variablen
bool gReverseDirection = true; // Kehrt den Effekt um, wenn wahr
float temperature; // Die höchste an den drei Sensoren gemessene Temperatur
float temperature_min = 20; // Konfiguriert den unteren Grenzwert der Gehäusetemperatur
float temperature_max = 40; // Konfiguriert den oberen Grenzwert der Gehäusetemperatur
boolean LEDstate;
boolean POWERstate = 0; // Wird "1" sobald der Loop aufgerufen wird
int cooling; // Variable für Beleuchtungseffekt Flammen
int sparking; // Variable für Beleuchtungseffekt Flammen
static byte heat[71]; // Ein Array für die Temperaturwerte
// Definiert die NeoPixel-Strips
CRGB strip[NUM_LEDS];
// Fire2012 with programmable Color Palette
//
// This code is the same fire simulation as the original "Fire2012",
// but each heat cell's temperature is translated to color through a FastLED
// programmable color palette, instead of through the "HeatColor(...)" function.
//
// Four different static color palettes are provided here, plus one dynamic one.
//
// The three static ones are:
// 1. the FastLED built-in HeatColors_p -- this is the default, and it looks
// pretty much exactly like the original Fire2012.
//
// To use any of the other palettes below, just "uncomment" the corresponding code.
//
// 2. a gradient from black to red to yellow to white, which is
// visually similar to the HeatColors_p, and helps to illustrate
// what the 'heat colors' palette is actually doing,
// 3. a similar gradient, but in blue colors rather than red ones,
// i.e. from black to blue to aqua to white, which results in
// an "icy blue" fire effect,
// 4. a simplified three-step gradient, from black to red to white, just to show
// that these gradients need not have four components; two or
// three are possible, too, even if they don't look quite as nice for fire.
//
// The dynamic palette shows how you can change the basic 'hue' of the
// color palette every time through the loop, producing "rainbow fire".
CRGBPalette16 gPal;
// Definiert die Tracking-Variablen für die IF-Abfragen
unsigned long previousMillisSensors = 0;
unsigned long previousMillisLED = 0;
unsigned long previousMillisEffect = 0;
unsigned long previousMillisSerialPrint = 0;
// Definiert die Intervalle für die IF-Abfragen
int intervalSensors = 1000; // Delay für Auslesen der Temperatursensoren
int intervalLED = 500; // Delay für die Ausgabe der Temperatur als Blinkfrequenz der LED2
int intervalEffect = 15; // Delay für Effekte
int intervalSerialPrint = 1000; // Delay für serielle Ausgabe
//-------------------------- Setup ------------------------------------------------------------------//
void setup() {
digitalWrite(POWERPIN, LOW); // Schaltet den MOSFET aus
Serial.begin(115200);
// Initialisiere die Output-Pins
pinMode(NEOPIN1, OUTPUT);
pinMode(NEOPIN2, OUTPUT);
pinMode(POWERPIN, OUTPUT);
pinMode(LEDPIN1, OUTPUT);
pinMode(LEDPIN2, OUTPUT);
// Initialisiere die NeoPixel-Strips
digitalWrite(POWERPIN, HIGH); // Schaltet den MOSFET ein
FastLED.addLeds<CHIPSET, NEOPIN1, COLOR_ORDER>(strip, NUM_LEDS).setCorrection( TypicalLEDStrip );
FastLED.addLeds<CHIPSET, NEOPIN2, COLOR_ORDER>(strip, NUM_LEDS).setCorrection( TypicalLEDStrip );
FastLED.setBrightness( BRIGHTNESS );
// This first palette is the basic 'black body radiation' colors,
// which run from black to red to bright yellow to white.
gPal = HeatColors_p;
// These are other ways to set up the color palette for the 'fire'.
// First, a gradient from black to red to yellow to white -- similar to HeatColors_p
// gPal = CRGBPalette16( CRGB::Black, CRGB::Red, CRGB::Yellow, CRGB::White);
// Second, this palette is like the heat colors, but blue/aqua instead of red/yellow
// gPal = CRGBPalette16( CRGB::Black, CRGB::Blue, CRGB::Aqua, CRGB::White);
// Third, here's a simpler, three-step gradient, from black to red to white
// gPal = CRGBPalette16( CRGB::Black, CRGB::Red, CRGB::White);
// Start up the sensor library
sensors.begin();
// locate devices on the bus
Serial.print("Locating devices...");
Serial.print("Found ");
Serial.print(sensors.getDeviceCount(), DEC);
Serial.println(" devices.");
// Search for devices on the bus and assign based on an index. Ideally,
// you would do this to initially discover addresses on the bus and then
// use those addresses and manually assign them (see above) once you know
// the devices on your bus (and assuming they don't change).
//
// method 1: by index
if (!sensors.getAddress(sensor0, 0)) Serial.println("Unable to find address for Device 0");
if (!sensors.getAddress(sensor1, 1)) Serial.println("Unable to find address for Device 1");
if (!sensors.getAddress(sensor2, 2)) Serial.println("Unable to find address for Device 2");
// show the addresses we found on the bus
Serial.print("Device 0 Address: ");
printAddress(sensor0);
Serial.println();
Serial.print("Device 1 Address: ");
printAddress(sensor1);
Serial.println();
Serial.print("Device 2 Address: ");
printAddress(sensor2);
Serial.println();
// set the resolution to 11 bit per device
sensors.setResolution(sensor0, TEMPERATURE_PRECISION);
sensors.setResolution(sensor1, TEMPERATURE_PRECISION);
sensors.setResolution(sensor2, TEMPERATURE_PRECISION);
#ifdef DEBUG_SENSOR
Serial.print("Device 0 Resolution: ");
Serial.println(sensors.getResolution(sensor0), DEC);
Serial.print("Device 1 Resolution: ");
Serial.println(sensors.getResolution(sensor1), DEC);
Serial.print("Device 2 Resolution: ");
Serial.println(sensors.getResolution(sensor2), DEC);
#endif
delay (2000);
}
//-------------------------- Loop -------------------------------------------------------------------//
void loop() {
// Aktuelle Zeit abfragen
unsigned long currentMillis = millis();
// Schaltet die NeoPixel ein und initialisiert die NeoPixel
if(POWERstate == 0) {
POWERstate = 1;
digitalWrite(LEDPIN1, HIGH); // Schaltet LED1 ein
}
// Auslesen der Temperatursensoren und Berechnen einiger Variablen zur Beeinflussung des Effekts
if ((unsigned long)(currentMillis - previousMillisSensors) >= intervalSensors) {
// Request to all devices on the bus
//temperature conversion - non-blocking / async
unsigned long start = micros();
sensors.setWaitForConversion(false); // makes it async
sensors.requestTemperatures();
sensors.setWaitForConversion(true);
unsigned long stop = micros();
#ifdef DEBUG_SENSOR
Serial.print("Time used for reading sensors: ");
Serial.print(stop - start);
Serial.println(" microseconds");
// print the device information
printData(sensor0);
printData(sensor1);
printData(sensor2);
#endif
// Berechnen der höchsten Temperatur an den verfügbaren Sensoren
float tempSensor0 = sensors.getTempC(sensor0);
float tempSensor1 = sensors.getTempC(sensor1);
float tempSensor2 = sensors.getTempC(sensor2);
temperature = max(tempSensor0, tempSensor1);
temperature = max(temperature, tempSensor2);
#ifdef DEBUG_SENSOR
Serial.print("Highest temperature: ");
Serial.print(temperature);
Serial.println(" °C");
#endif
// Berechenen der Blinkfrequenz von LED2
constrain(temperature, temperature_min, temperature_max);
intervalLED = map(temperature, temperature_min, temperature_max, 500, 100);
#ifdef DEBUG_SENSOR
Serial.print("Blink frequency LED2: "); Serial.print(intervalLED); Serial.println(" ms");
#endif
// Berechnung von Cooling für den Effekt Fire 2012: Legt fest, wie stark die aufsteigenden Flammen abkühlen.
// Weniger Cooling = höhere Flammen, mehr Cooling = kürzere Flammen.
// Werte zwischen 20 und 100 sind empfohlen, ein guter Standard ist 55.
cooling = map(temperature, temperature_min, temperature_max, 100, 40);
// Berechnung von Sparking für den Effekt Fire2012: Legt fest, wie oft ein Funke auflohdert.
// Höhere Werte = stürmisches Feuer, niedrige Werte = ruhigeres Feuer.
// Werte zwischen 50 und 200 sind empfohlen, ein guter Standard ist 120.
sparking = map(temperature, temperature_min, temperature_max, 30, 100);
#ifdef DEBUG_SENSOR
//Serial.print("cooling: ");
Serial.print(cooling); Serial.print("\t");
//Serial.print("sparkling: ");
Serial.println(sparking);
#endif
//Speichere die aktuelle Zeit in die zughörige Variable
previousMillisSensors = currentMillis;
}
// Ausgabe der Temperatur als Blinkfrequenz der LED1
if ((unsigned long)(currentMillis - previousMillisLED) >= intervalLED) {
if(LEDstate == 0) {
digitalWrite(LEDPIN2, HIGH);
//Serial.println("LED an");
LEDstate = 1;
}
else if(LEDstate == 1) {
digitalWrite(LEDPIN2, LOW);
//Serial.println("LED aus");
LEDstate = 0;
}
//Speichere die aktuelle Zeit in die zughörige Variable
previousMillisLED = currentMillis;
}
// Feuer-Effekt: Fire2012 by Mark Kriegsman, July 2012
if ((unsigned long)(currentMillis - previousMillisEffect) >= intervalEffect) {
#ifdef DEBUG_EFFECT
unsigned long start = micros(); // Zeitstempel Start
#endif
// Add entropy to random number generator; we use a lot of it.
random16_add_entropy( random());
// This basic one-dimensional 'fire' simulation works roughly as follows:
// There's a underlying array of 'heat' cells, that model the temperature
// at each point along the line. Every cycle through the simulation,
// four steps are performed:
// 1) All cells cool down a little bit, losing heat to the air
// 2) The heat from each cell drifts 'up' and diffuses a little
// 3) Sometimes randomly new 'sparks' of heat are added at the bottom
// 4) The heat from each cell is rendered as a color into the leds array
// The heat-to-color mapping uses a black-body radiation approximation.
// Temperature is in arbitrary units from 0 (cold black) to 255 (white hot).
// Step 1. Cool down every cell a little
for( int i = 0; i < NUM_LEDS; i++) {
heat[i] = qsub8( heat[i], random8(0, ((cooling * 10) / NUM_LEDS) + 2));
}
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for( int k= NUM_LEDS - 1; k >= 2; k--) {
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3;
}
// Step 3. Randomly ignite new 'sparks' of heat near the bottom
if( random8() < sparking ) {
int y = random8(7);
heat[y] = qadd8( heat[y], random8(160,255) );
}
// Step 4. Map from heat cells to LED colors
for( int j = 0; j < NUM_LEDS; j++) {
// Scale the heat value from 0-255 down to 0-240
// for best results with color palettes.
uint8_t colorindex = scale8( heat[j], 240);
CRGB color = ColorFromPalette( gPal, colorindex);
int pixelnumber;
if( gReverseDirection ) {
pixelnumber = (NUM_LEDS-1) - j;
} else {
pixelnumber = j;
}
strip[pixelnumber] = color;
//strip2[pixelnumber] = color;
}
FastLED.show(); // display this frame
#ifdef DEBUG_EFFECT
unsigned long stop = micros(); // Zeitstempel Stopp
// Ausgabe der Zeit in Microsekunden, die für die Berechnung des Effekts benötigt wird
//Serial.print("Time used for calculating effect: ");
Serial.println(stop - start);
//Serial.println(" microseconds");
#endif
//Speichere die aktuelle Zeit in die zughörige Variable
previousMillisEffect = currentMillis;
}
}
//-------------------------- Funktionen --------------------------------------//
// function to print a device address
void printAddress(DeviceAddress deviceAddress)
{
for (uint8_t i = 0; i < 8; i++)
{
// zero pad the address if necessary
if (deviceAddress[i] < 16) Serial.print("0");
Serial.print(deviceAddress[i], HEX);
}
}
// function to print the temperature for a device
void printTemperature(DeviceAddress deviceAddress)
{
float tempC = sensors.getTempC(deviceAddress);
Serial.print("Temp C: ");
Serial.print(tempC);
}
// function to print a device's resolution
void printResolution(DeviceAddress deviceAddress)
{
Serial.print("Resolution: ");
Serial.print(sensors.getResolution(deviceAddress));
Serial.println();
}
// main function to print information about a device
void printData(DeviceAddress deviceAddress)
{
Serial.print("Device Address: ");
printAddress(deviceAddress);
Serial.print(" ");
printTemperature(deviceAddress);
Serial.println();
}
arduino/silentbase_802_neopixel/programmversion_4.txt · Zuletzt geändert: 18.05.2023 12:34 von 127.0.0.1